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WELL-TO-WHEELS ANALYSIS OF ENERGY USE AND GREENHOUSE GAS
EMISSIONS OF PLUG-IN HYBRID ELECTRIC VEHICLES

by

Amgad Elgowainy, Jeongwoo Han, Leslie Poch, Michael Wang, Anant Vyas, Matthew Mahalik,
and Aymeric Rousseau

EXECUTIVE SUMMARY

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by
the automotive industry. PHEVs have been touted for their potential to reduce the
U.S. transportation sector’s dependence on petroleum and cut greenhouse gas (GHG) emissions
by (1) using off-peak excess electric generation capacity and (2) increasing vehicles’ energy
efficiency. A well-to-wheels (WTW) analysis — which examines energy use and emissions from
primary energy source through vehicle operation — can help researchers better understand the
impact of the upstream mix of electricity generation technologies for PHEV recharging, as well
as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne
National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy
use in Transportation (GREET) model developed by Argonne to compare the WTW energy use
and GHG emissions associated with various transportation technologies to those associated with
PHEVs.

Argonne researchers estimated the fuel economy and electricity use of PHEVs and
alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model.
They examined two PHEV designs: the power-split configuration and the series configuration.
The first is a parallel hybrid configuration in which the engine and the electric motor are
connected to a single mechanical transmission that incorporates a power-split device that allows
for parallel power paths — mechanical and electrical — from the engine to the wheels, allowing
the engine and the electric motor to share the power during acceleration. In the second
configuration, the engine powers a generator, which charges a battery that is used by the electric
motor to propel the vehicle; thus, the engine never directly powers the vehicle’s transmission.
The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range
because they require frequent use of the engine for acceleration and to provide energy when the
battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile
electric range because they rely mostly on electrical power for propulsion.

Argonne researchers calculated the equivalent “on-road” (real-world) fuel economy on
the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The
reduction in fuel economy attributable to the “on-road” adjustment formula was capped at 30%
for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles
[HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with
model year 2015 mid-size vehicles were chosen for this analysis to address the implications of
PHEVs within a reasonable timeframe after their likely introduction over the next few years. For



the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to
examine the impact of significant PHEV loading on the utility power sector. Technological
improvement with medium uncertainty for each vehicle was also assumed for the analysis.

Argonne employed detailed dispatch models to simulate the electric power systems in
four major regions of the United States: the New England Independent System Operator, the
New York Independent System Operator, the State of Illinois, and the Western Electric
Coordinating Council. Argonne also evaluated the U.S. average generation mix and renewable
generation of electricity for PHEV and BEV recharging scenarios to show the effects of these
generation mixes on PHEV WTW results.

Argonne’s GREET model was designed to examine the WTW energy use and GHG
emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline
internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting
(CD) operation of PHEVs under different recharging scenarios. The combined WTW results of
CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also
examined and reported. According to the utility factor method, the share of vehicle miles
traveled during CD operation is 25% for PHEV10 and 51% for PHEV40.

Argonne’s WTW analysis of PHEVs revealed that the following factors significantly impact
the energy use and GHG emissions results for PHEVs and BEVs compared with baseline
gasoline vehicle technologies: (1) the regional electricity generation mix for battery recharging
and (2) the adjustment of fuel economy and electricity consumption to reflect “real-world”
driving conditions. Although the analysis predicted the marginal electricity generation mixes for
major regions in the United States, these mixes should be evaluated as possible scenarios for
recharging PHEVs because significant uncertainties are associated with the assumed market
penetration for these vehicles. Thus, the reported WTW results for PHEVs should be directly
correlated with the underlying generation mix, rather than with the region linked to that mix. The
primary conclusion is that electrification of transportation significantly reduces petroleum energy
use, but GHG emissions strongly depend on the electricity generation mix for battery recharging.
Sections ES.1 and ES.2 summarize petroleum and GHG emissions results for CD operation of
gasoline PHEVs and BEVs, and for combined CD and CS operation of PHEVs, respectively.

ES.1 CD OPERATION OF GASOLINE PHEVS AND BEVS

ES.1.1 Petroleum Displacement

In CD operation modes, PHEVs employing the power-split and series configurations
could realize reductions in petroleum energy use of more than 60% and 90%, respectively,
because the petroleum share is small in the electricity generation mix for most regions in the
United States (Figure ES.1, horizontal axis). BEVs can virtually eliminate the use of petroleum
fuels for each vehicle mile traveled on electricity.
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FIGURE ES.1 WTW Petroleum Use and GHG Emissions for CD Operation of Gasoline PHEVs
and BEVs Compared with Baseline Gasoline ICEVs and Regular Gasoline HEVs

ES.1.2 GHG Emissions

o Unconstrained charging (with investments in new generation capacity) reduces
GHG emissions (Figure ES.1, vertical axis) compared with smart charging (no
needed investment in new capacity) because of the high efficiency and low carbon
intensity associated with the added capacity in the unconstrained charging
scenario.

o PHEVs recharging from a mix with a large share of coal generation (e.g., Illinois
marginal mix) produce GHG emissions comparable to those of baseline gasoline
ICEVs (with a range from -15% to +10%) but significantly higher than those of
gasoline HEVs (with a range from +20% to +60%). The range of the results is
primarily attributable to the different generation mix for the charging scenarios
considered and the different PHEV types (power-split versus series designs).



PHEVs recharging from a mix with a large share of efficient electricity generation
from natural gas (e.g., natural gas combined-cycle [NGCC] generation in the
Western Electric Coordinating Council region) produce GHG emissions
comparable to those of gasoline HEVs (with a range from -15% to +10%) but
significantly lower than those of baseline gasoline ICEVs (with a range from
-25% to -40%). The range of results is primarily attributable to the different
generation mix for the charging scenarios considered and the different PHEV
types (power-split versus series designs).

PHEVs recharging from a generation mix comparable to the U.S. average mix
produce lower GHG emissions than baseline gasoline ICEVs (with a range from
-20% to -25%) but higher than gasoline HEVs (with a range from +10% to
+20%).

To achieve significant reductions in GHG emissions, PHEVs and BEVs must
recharge from a generation mix with a large share of nonfossil sources (e.g.,
renewable or nuclear power generation). PHEVs recharging from a potential
renewable or nonfossil generation mix reduce GHG emissions by more than 60%
for the power-split PHEV configuration and by more than 90% for the series
configuration compared with baseline gasoline ICEVs. BEVs can virtually
eliminate GHG emissions (per mile traveled) if recharged from nonfossil
electricity generation.

ES.1.3 Electric Range of PHEVs and BEVs in Real-World Driving

The actual CD range of PHEVs could be lower or higher than the rated electric
range on the standard driving cycles, depending on the powertrain type and the
vehicle’s control strategy. Power-split PHEVs extend the electric range because
the battery receives significant help from the engine, resulting in blended (i.e.,
blended use of battery and engine) operation in CD mode. The electric range of
BEVs and series PHEVs drops below the rated electric range because of the
higher battery discharge rate required to meet real-world driving conditions.

ES.2 COMBINED CD AND CS OPERATION OF PHEVS

ES.2.1 Petroleum Displacement

PHEVs powered by petroleum fuels (i.e., gasoline and diesel) reduce petroleum
energy use by 40-60% compared with conventional gasoline ICEVs, while
PHEVs powered by E85 (blend of 85% ethanol and 15% gasoline by volume)
reduce petroleum energy use by 80-90%, and PHEVs powered by hydrogen
reduce petroleum energy use by greater than 90% (Figure ES.2, horizontal axis).
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FIGURE ES.2 WTW Petroleum Use and GHG Emissions for Combined CD and CS Operation
of PHEVs (unconstrained charging) Compared with Baseline Gasoline ICEVs

ES.2.2 GHG Emissions

e Compared with conventional gasoline ICEVs, PHEVs powered by petroleum
fuels (i.e., gasoline and diesel) reduce GHG emissions by 10-60%, PHEVs
powered by E85 (blend of 85% ethanol and 15% gasoline by volume) reduce
GHG emissions by 20-80%, and PHEVs powered by hydrogen reduce these
emissions by 25-90%. The large range of GHG emissions reductions is
attributable to the variety of feedstock sources considered for producing the fuel

and electricity for each vehicle.

o PHEVs achieve greater petroleum energy savings with increased electric range.
Conversely, more GHG emissions are produced with increased electric range
unless renewable or nonfossil electricity generation is used for recharging.



PHEVs employing biomass-based fuels (e.g., E85 or hydrogen from biomass
sources) may not achieve GHG emissions benefits compared with conventional
HEVs (employing the same fuel) if the electricity generation mix for PHEV
recharging is dominated by fossil fuel sources.



1 INTRODUCTION

1.1 PREVIOUS STUDIES

Because of increasing concerns about climate change, the growing demand for and
declining production of oil, and the associated increase in oil prices, many researchers have
investigated the cost and the potential reductions in petroleum use and greenhouse gas (GHG)
emissions associated with plug-in hybrid electric vehicles (PHEVs). Kromer and Heywood
(2007) evaluated the potential of electric and hybrid electric powertrains — such as PHEVs,
gasoline hybrid electric vehicles (HEVs), fuel-cell vehicles (FCVs), and battery-powered electric
vehicles (BEVs) — to reduce petroleum use and GHG emissions. Their study showed that a
PHEV30 uses only one-third the petroleum of a gasoline-fueled spark-ignition baseline vehicle
and one-half that of an HEV, while a PHEV recharging from the average Energy Information
Administration (EIA) projection of the electric grid in 2020 offers nearly the same GHG-
reduction benefits as an HEV. They concluded that the potential of PHEVs, BEVs, and FCVs to
offer the sought-after reduction in GHG emissions is constrained by continued reliance on fossil
fuels to produce the electricity and hydrogen needed to fuel these vehicles.

An International Energy Agency report examining hybrid and electric vehicle
technologies concluded that PHEVs operating in charge-depleting (CD) mode can outperform
HEVs in terms of GHG emission reductions if 75% or more of the required electricity is
generated from combined-cycle natural gas (Passier et al. 2007). The Electric Power Research
Institute (EPRI) and Natural Resources Defense Council (NRDC) (2007) examined the GHG
emissions of potentially large numbers of PHEVs over a time period from 2010 to 2050. Their
results revealed that in 2010, even with current coal technologies, a PHEV20 would produce 28—
34% lower GHG emissions compared with a conventional gasoline vehicle and 1-11% higher
GHG emissions compared with an HEV. In 2050, a PHEV20 would generate approximately the
same GHG emissions as an HEV powered by electricity from coal-fired power plants that do not
capture carbon dioxide (CO,) emissions and 37% lower GHG emissions than an HEV powered
by coal-fired power plants equipped with CO, capture and storage technologies. EPRI and
NRDC examined several PHEV and electricity generation technology scenarios for 2050 and
concluded that PHEVs would generate lower GHG emissions than either conventional or hybrid
vehicles — improvements would range from 40-65% compared with a conventional vehicle and
from 7-46% compared with an HEV.

Gaines et al. (2008) examined WTW energy use and GHG emissions for several
fuel/vehicle systems that used different feedstock sources. They found that, regardless of
pathway, when switching to a feedstock other than conventional oil, the best option is a PHEV
operating in CD, rather than CS, mode. Morrow et al. (2008) evaluated the charging
infrastructure requirements for PHEVs and found that 40 miles of charge-depleting range is
necessary for an average PHEV if no infrastructure is available outside of the owner’s primary
residence; the charge-depleting range can be lowered to 13 miles if public charging infrastructure
is available. Morrow and his colleagues highlighted the fact that the availability of a robust
charging infrastructure can reduce onboard energy storage requirement (i.e., battery size), as well
as the charging time for PHEVs. They concluded that the overall transportation system cost can



be reduced by providing a robust charging infrastructure, rather than compensating for lean
infrastructure with additional battery size and range.

Thomas (2009) examined the cost and benefits of BEVs in comparison to FCVs. He
concluded that hydrogen-powered FCVs would use 33-55% less energy than BEVs in
converting natural gas to vehicle fuel with today’s electrical power plants. He calculated the ratio
of GHG emissions from BEVs (recharging from the U.S. average mix) to those from FCVs
(powered by hydrogen from natural gas sources). His results indicated ratios of 1.58 and 1.86 for
200- and 300-mile vehicle range, respectively. Thomas also showed that BEVs with a 300-mile
range would have higher GHG emissions compared with conventional gasoline ICEVs.
Recently, the National Research Council (2009) released a report assessing the cost and
environmental impact of PHEVs. The report concluded that a PHEV10 or a PHEV40 reduce oil
consumption by 20% and 55%, respectively, compared with a gasoline HEV. The report also
concluded that a PHEV10 generates fewer GHG emissions compared with conventional
(nonhybrid) vehicles, but more than HEVs after accounting for emissions at the generating
stations that supply electric power.

1.2 ANALYSIS OVERVIEW

This study is an extension of Argonne’s earlier analysis of the well-to-wheels (WTW)
energy use and GHG emissions associated with the possible introduction of plug-in hybrid
electric vehicles (PHEVs) and other alternative vehicle technologies into the marketplace
(Elgowainy et al. 2009). At the conclusion of phase I of our previous analysis, we identified two
main issues that required further investigation: the per-mile electricity use and fuel consumption
of alternative vehicle technologies and the marginal electricity generation mix for PHEVs
charging in different U.S. regions. The analysis described in this report addresses these two
issues in detail and evaluates their impact on the WTW energy use and GHG emissions in
different regions of the United States.

With funding from the U.S. Department of Energy (DOE), researchers in Argonne’s
Center for Transportation Research use Argonne’s Greenhouse gases, Regulated Emissions, and
Energy use in Transportation (GREET) model to estimate the full fuel-cycle energy use and
emissions for alternative transportation fuels and advanced vehicle systems (Wang 1999).
GREET estimates fuel-cycle energy use in British thermal units per mile (Btu/mi) and GHG
emissions in grams per mile (g/mi) for advanced vehicle technologies, including PHEVs.
GREET tracks fuel use and emissions from the primary energy source to vehicle operation; such
a study is known as a “well-to-wheels” analysis. A WTW analysis is often divided into well-to-
pump (WTP) and pump-to-wheels (PTW) stages. The WTP stage starts with the fuel feedstock
recovery, followed by fuel production, and ends with the fuel available at the pump, while the
PTW stage represents the vehicle’s operation.

The engine/fuel combinations examined in this analysis are a spark ignition (SI) engine
fueled by gasoline, an SI engine fueled by a blend of 85% ethanol and 15% gasoline (E85), a
compression-ignition (CI) engine fueled by low-sulfur diesel (LSD), a fuel cell power system
fueled by gaseous hydrogen (H,), and a BEV fueled by electricity. The feedstock sources



considered are corn and switchgrass for E85 and distributed natural gas (NG) steam methane
reformation (SMR) and switchgrass (gasification) for H,. Table 1.1 summarizes the vehicle
technologies and fuels considered in this analysis, as well as the feedstock sources for these
fuels.

A conventional gasoline ICEV and a regular HEV employing an internal combustion
engine (ICE) and a fuel cell are compared with a PHEV using the same fuels to examine their
relative benefits with respect to energy use and GHG emissions. Simulations for calendar year
2020 with model year (MY) 2015 vehicles are chosen for this analysis to address the
implications of PHEVs within a reasonable timeframe after their likely introduction over the next
few years.

The fuel economy values for ICEVs and FCVs and the electricity consumption values for
CD modes of PHEVs and BEVs were obtained from Argonne’s Powertrain System Analysis
Toolkit (PSAT) simulations. PSAT is a forward-looking modeling package that can simulate any
standard or custom driving cycle for different vehicle configurations in the model’s database.
PSAT then estimates the fuel consumption by these vehicle technologies on selected driving
cycles. Two PHEV design configurations were considered for this analysis: a power-split design
for PHEV10 and 20 (i.e., with 10 and 20 miles of all-electric range [AER]) and a series design
for PHEV30 and 40 (i.e., with 30 and 40 miles of AER). The power-split design is a parallel
hybri